GMN Paul Müller Industrie GmbH & Co. KG Äußere Bayreuther Str. 230 · D-90411 Nürnberg Phone: +49 911 5691-0 www.gmn.de

Spindle technology: Phone: +49 911 56 91-686 Mail: vertriebspi@gmn.de

Official **GMN** representative:

High speed spindles Series UH for manual tool change

High speed spindles for manual tool change Series UH

With the new spindle series UH, GMN presents a future-oriented development in spindle technology. Significant optimizations of performance characteristics have been taken out that offer new possibilities in metalworking.

The integrated electric motors of the new GMN spindle models of the UH series are equally powerful and compact synchronous motors. Even in critical load ranges, they are characterized by stable performance values at up to 50% lower operating temperatures.

With comparable operating requirements, the synchronous motor with its excellent power density and increased bearing size and shaft diameters, the synchronous motor allows the use of larger tool interfaces.

With the fixing of stable tools and the shorter shaft lengths, UH spindles from GMN achieve the highest dynamic stiffness in extreme speed ranges as well smooth running in cutting and grinding manufacturing processes.

New dimensions in space

GMN spindles of the UH series realize demanding performance profiles in an extremely small installation space. The connected peripherals of the spindle, such as inverters and control cabinets, are also suitable for high requirements under limited space conditions.

The intelligent spindle solution from GMN

All new models of the UH series are equipped with the digital IO-Link interface and "IDEA-4S". IDEA-4S processes the incoming sensor signals, continuously provides extensive information about the current operating condition and enables immediate adjustments to be made to possible changes during the production process.

Focus on performance

Based on exceptional performance data and intelligent digital machine management, GMN spindles of the UH series combine maximum productivity and profitability with the highest possible manufacturing quality in a compact size. Higher Efficiency

Bigger Bearing Diameter

Bigger Tool Interfaces

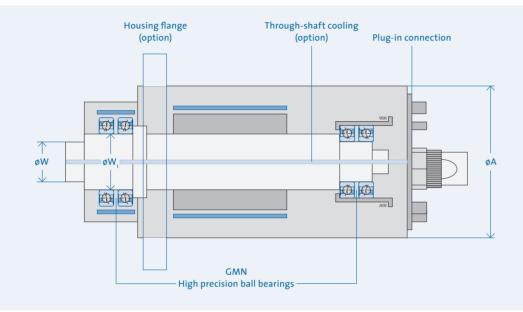
Digital Interface IDEA-4S

Less Lubicant/Air

Lower Vibration

Lower Noise

Legend



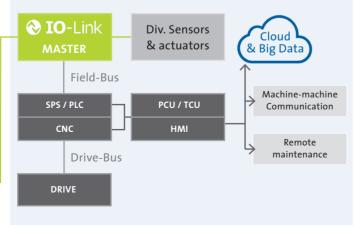
Motor data:

- f = frequency max. [Hz]
- M = torque moment [Nm]
- n = speea [rpm]

Rated powe

- P = power [kW]
- I = current [A]

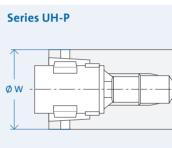
IoT ready with IDEA-4S


The embedded system IDEA-4S (Integrated Data Acquisition and Evaluation for Spindles) is already integrated as standard for this spindle series. It records and processes continuous data from the bearing and cooling temperature sensors as well as from the speed sensor and vibration sensor.

To obtain information based on this data, the IDEA-4S evaluates the measurement values right in the spindle and transmits its results via bidirectional IO-Link communication to the machine

control and within the production network. Thus, the user is constantly informed about how to improve the application of the spindle.

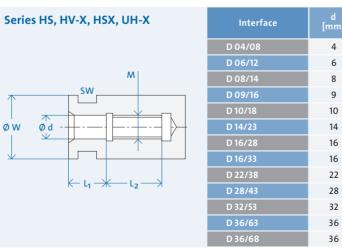
Additionally, a digital nameplate is available to the user which simplifies the commissioning and identification of the spindle with all its product-related data. For all sensors, the operating data is recorded as statistical values. Furthermore, it is possible to store application data in the system and to read from an error memory.



Taper hollow shaft with flat contact face: HSK-C for Tools according to DIN 69893-1

Taper hollow shafts (HSK) with flat contact faces are standardized per DIN 69893-1. The various shapes differ with respect to drive key slots and contact surface. Form C has been especially developed for use with manual tool change systems.

Spindles in type series UH-P can accept tools with taper hollow shafts of form A and C. The HSK interface allows these spindles to be operated in both directions of rotation.



Interface	W [mm]
K-C25	25
K-C32	32
K-C40	40
K-C50	50
K-C63	63
K-C80	80
K-C100	100

GMN standard: Fitting bores with flat contact face

High-speed spindles in type series HS, HSX, HV-X und UH-X are equipped with the GMN standard – fitting bore/flat contact face and internal threads – that has proven itself over many decades.

Tool interfaces

W [mm]	м	L ₁ [mm]	L ₂ [mm]	SW
8	M4 (x 0.7)	6	8	7
12	M6 (x 1)	9	11	11
14	M8 (x 1.25)	12	14	13
16	M9 (x 1.25)	13	14	14
18	M10 (x 1.5)	15	19	16
23	M14 x 1.5	20	19	20
28	M16 x 1.5	24	19	24
33	M16 x 1.5	24	19	24
38	M22 x 2	34	25	32
43	M28 x 2	42	25	38
53	M32 x 2	46	25	48
63	M36 x 2	50	30	55
68	M36 x 2	50	30	60
	[mm] 8 12 14 16 18 23 28 33 38 43 53 63	M 8 M4 (x 0.7) 12 M6 (x 1) 14 M8 (x 1.25) 16 M9 (x 1.25) 18 M10 (x 1.5) 23 M14 x 1.5 23 M14 x 1.5 33 M16 x 1.5 38 M22 x 2 43 M28 x 2 53 M32 x 2 63 M36 x 2	M [mm] 8 M4 (x 0.7) 6 12 M6 (x 1) 9 14 M8 (x 1.25) 12 16 M9 (x 1.25) 13 18 M10 (x 1.5) 15 23 M14 x 1.5 20 28 M16 x 1.5 24 33 M16 x 2 24 38 M22 x 2 34 43 M28 x 2 42 53 M32 x 2 46 63 M36 x 2 50	M [mm] [mm] 8 M4 (x 0.7) 6 8 12 M6 (x 1) 9 11 14 M8 (x 1.25) 12 14 16 M9 (x 1.25) 13 14 18 M10 (x 1.5) 15 19 23 M14 x 1.5 20 19 33 M16 x 1.5 24 19 38 M22 x 2 34 25 43 M28 x 2 42 25 53 M32 x 2 46 25 63 M36 x 2 50 30

GMN Series UH

Series: UH 100

Tool interface: · GMN standard

· HSK (DIN 69063-1)

Bearing arrangement: · GMN hybrid ball bearings

Lubrication: · Oil-air lubrication

Motor:

· Synchronous motor ** 200 V on request

Series: UH 120

Tool interface:

· GMN standard

Lubrication:

Motor:

· Oil-air lubrication

· Synchronous motor

** 200 V on request

· HSK (DIN 69063-1)

Bearing arrangement:

· GMN hybrid ball bearings

TECHNIC	AL DATA	
Spindle housing Ø	A	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal converter		[V]
Power	P _{S1}	[kW]
Torque	M _{S1}	[Nm]
at speed	n	[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	$M_{56-60\%}$	[Nm]
at speed	n	[rpm]
Current	I _{56-60%}	[A]
P _{S6-60%}	[kW]	
M _{56-60%}	[Nm]	
Speed	[rpm] x 1	,000

0

¹⁾ Minimum required output voltage of the frequency converter

Spindle housing Ø	A	[mn
Speed max.	n _{max}	[rpn
Bearing Ø front	W ₁	[mn
Tool interface		
Flat contact face Ø	ØW	[mm
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal converte	r voltage) [V]
Power	P _{S1}	[kW
Torque	M _{S1}	[Nm
at speed		[rpn
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW
Torque	M _{56-60%}	[Nm
at speed		[rpn
Current	I _{56-60%}	[A]
P _{56-60%}	[kW]	
M _{56-60%}	[Nm]	
Speed	[rpm] x [·]	1,000

	06-7	`	
	100		
	120,00	00	
	17		
	D 09/1	16	
	16		
	350 \	/	
	2,000	D	
	350		
	1.7		
	0.135	;	
	120,00	00	
	4.3		
	2		
	0.156		
	120,00	00	
	4.9		
P [kW] 2,5 2 1,5 1 0,5 0 0	50	100	M [Nm] 0,18 0,16 0,14 0,14 0,14 0,14 0,12 0,12 0,1 0,18 0,16 0,14 0,14 0,14 0,14 0,18 0,08
Speed [rpm] x 1,	000	

UH-X 100 - 120000/1.7

0

UH-X 100 - 105000/3

UH-X 100

105,000

20

D 10/18 18

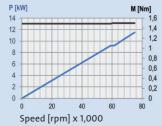
350 V

1,750 350

3

0.27 105.000

6.2


3.5

0.31 105,000 7.1

M [Nm]

P [kW]

UH-X/P 120 - 75000/10			
UH-X / UH-P			
120			
75,0	00		
30	C		
D 16/28 / HSK-C 25			
28 / 25			
200 V**	420 V		
1,250			
200	412		
10			
1.3			
75,000			
39	16		
11.5			
1.5			
75,0	000		
45	18		
P [kW]	M [Nm]		

3,5 3 2,5 2 1,5 1 0,5 0 20 40 0 Speed [rpm] x	0,3 0,3 0,25 0,2 0,15 0,15 0,15 0,15 0,05 0 0,05 0 0,05 0 0,05			
UH-X/P 120 - 60000/8 UH-X / UH-P				
UH-X /	UH-P			
UH-X / 12				
	0			
12	00			
12 60,0	0 00 ;			
12 60,0 3!	0 00 ; HSK-C 32			
12 60,0 3! D 16/33 /	0 00 ; HSK-C 32			

120	D			
60,000				
35				
D 16/33 / HSK-C 32				
33 / 32				
200 V**	420 V			
1,00	00			
200	412			
8				
1.3				
60,000				
38	16			
11.	5			
1.5				
60,000				
44	18			
2 [kW]	M [Nm] 1,6 1,4			

[kW]				M [Nm]
H				- 1
				- 1,
				- 1
				- 0,
				- 0,
				- 0,
0	20	40	60	0 80
Spee	ed [rpm] x 1,00	0	

UH-X 100 - 90000/4			
UH-X			
10	100		
90,0	000		
25	5		
D 14	/23		
23			
200 V**	400 V		
1,50	1,500		
200	396		
4			
0.	5		
77,000			
15	7.5		
4.	6		
0.5	57		
77,0	77,000		
17	8.6		
P [kW]	M [Nm] 0,7 - 0,6		

2.5

0.5

- 0,5

- 0,4

- 0,3

- 0,2

- 0,1

- 0

60 80 100

40

UH-X/P 120 - 60000/11

UH-X / UH-P

120

60,000

35

D 16/33 / HSK-C 32

33 / 32

2,000

11

3.6

29,000

12.6

4.2

29,000

400 V

288

49

56

M [Nm]

- 0,5

- 0

80

Speed [rpm] x 1,000

20

200 V**

200

76

87

20

Speed [rpm] x 1,000

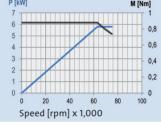
40

60

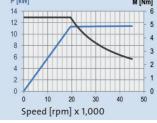
P [kW]

12

10


8 -

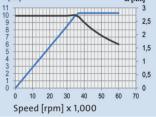
6 -

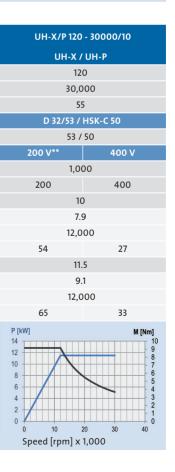

4 -

2

UH-X/P 100 - 75000/5		
UH-X / UH-P		
10	0	
75,0	00	
30)	
D 16/28 /	HSK-C 25	
28 /	25	
200 V**	400 V	
1,250		
200	400	
5		
0.76		
63,000		
19	9.2	
5.8		
0.87		
63,000		
22	11	
P [kW] 7	M [Nm]	

	UH-X/P 120	UH-X/P 120 - 45000/10		
	UH-X /	UH-X / UH-P		
	12	120		
	45,0	45,000		
	4	45		
	D 28/43 /	D 28/43 / HSK-C 40		
	43 /	43 / 40		
	200 V**	425 V		
	1,50	1,500		
	200	425		
	10	10		
	4.	4.8		
	19,5	19,500		
	52	26		
	11.	11.3		
	5.	5.5		
	19,5	19,500		
	62	31		
Nm] - 4,5 - 3,5 - 3 - 2,5 - 2	P [kW] 14 12 10 8	M [Nm] 6 5 4 3		
- 1,5		- 2		




of the frequency converter

6

UH-X/P 100 - 60000/9				
UH-X / UH-P				
100				
60,000				
35				
D 16/33 /	НЅК-С 32			
33 /	32			
200 V**	400 V			
2,00	00			
200	400			
9				
2.4	4			
36,000				
46	24			
10.3				
2.7				
36,000				
54	28			
P [kW] 11 10 9	M [Nm] 3 2,5			

UH-X/P 100 - 45000/9				
UH-X / UH-P				
100				
45,000				
45				
D 28/43 / HSK-C 40				
43 / 40				
400 V				
1,500				
400				
9				
3.2				
27,000				
24				
10.3				
3.7				
27,000				
27				
P [kW] M [Nm]				
4,5 4,5 3,3 2,5 2,6 4 4 4 5,6 4 4 5,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5				

GMN Series UH

Series: UH 150

Tool interface: · GMN standard

· HSK (DIN 69063-1)

Bearing arrangement: · GMN hybrid ball bearings

Lubrication: · Oil-air lubrication

Motor:

· Synchronous motor ** 200 V on request

Series: UH 170

Tool interface:

· GMN standard

Lubrication: · Oil-air lubrication

Motor:

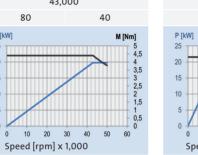
· HSK (DIN 69063-1)

Bearing arrangement:

· Synchronous motor ** 200 V on request

· GMN hybrid ball bearings

TECHNICAL DATA		
Spindle housing Ø	A	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal converter	voltage ¹⁾	[V]
Power	P _{S1}	[kW]
Torque	M _{S1}	[Nm]
at speed	n	[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]
Current	I _{56-60%}	[A]
P _{56-60%}	[kW]	
M _{56-60%}	[Nm]	
Speed	[rpm] x 1,	000


¹⁾ Minimum required output voltage of the frequency converter

TECHN	CAL DAT	Ą
Spindle housing	ØА	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face	ØW	[mm]
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal convert	er voltag	e ¹⁾ [V]
Power	P _{S1}	[kW]
Torque	M _{S1}	[Nm]
at speed	n	[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M ₅₆₋₆₀	_% [Nm]
at speed		[rpm]
Current	I _{56-60%}	[A]
P _{56-60%}	[kW]	
M _{56-60%}	[Nm]	
Speed	[rpm] >	c 1,000
¹⁾ Minimum requir	ed outpu	t voltag

UH-X / UH-P				
150				
50,0	00			
4	5			
D 28/40 /	HSK-C 40			
40 /	40			
200 V**	400 V			
83	4			
200	361			
18	3			
4				
43,0	000			
73	36			
19.	.8			
4.	4			
43,0	000			
80	40			
P [kW]	M [Nm]			
25	5 - 4,5			
20	4 - 3,5			
15	3 - 2,5			
10	2,3 2 - 1,5			
5	1			

0

25 15 UH-X/P 150 - 50000/18

0

UH-X/P 150 - 40000/20

UH-X / UH-P

150

40,000

55

D 32/53 / HSK-C 50

53 / 50

400 V

1,334 400

20

13.5

14,000

72

23

15.5 14,000

88

20 30

UH-X/P 170 - 30000/17

UH-X / UH-P

170

30,000

65

D 36/63 / HSK-C 63 63

450 V

1,000

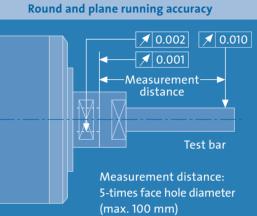
Speed [rpm] x 1,000

5

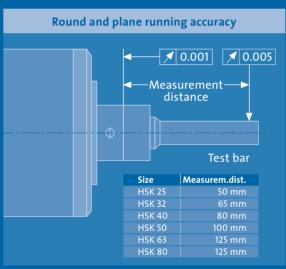
M [Nm]

UH-X/P 170 - 40000/32			
UH-X / UH-P			
170	D		
40,000			
55			
D 32/53 /	HSK-C 50		
53 /	50		
200 V**	500 V		
1,33	34		
200	496		
32	2		
16	.1		
19,0	00		
167	51		
36.8			
18.	5		
19,0	00		
192	64		
P [kW]	M [Nm]		
40	- 18		

30 40 50


20 Speed [rpm] x 1,000

403	
17	
23.1	
7,000	
44	
19.6	
26.6	
7,000	
54	
P [kW]	M [Nm]
P [kW]	30
P [kW] 25 20	
P [kW] 25 20 15	30
P [kW] 25 20 15 10	30 - 25 - 20 - 15 - 10
P [kW] 25 20 15 10 5	30 - 25 - 20 - 15 - 10 - 5
P [kW] 25 20 15 10	30 - 25 - 20 - 15 - 10


UH-X/P 150 - 30000/25				
	UH-X	/UH-F	•	
	1	50		
30,000				
		65		
D	36/63	/ HSK-0	63	
		/ 63		
	40	00 V		
		000		
	4	00		
		25		
		17		
	14	,000		
		78		
	2	8.8		
		9.6		
		,000		
	9	98		
P [kW] 35				M [Nm] 25
30	-		+	- 20
20				- 15
15			< -	- 10
10 5				- 5
0	10	20	30	40 0
0		20 x 1,000		40

UH-X/P 170 - 20000/17	
UH-X / UH-P	
170	
20,000	
70	
D 36/68 / HSK-C 63	
68 / 63	
400 V	
667	
400	
17	
36.8	
4,410	
30	
19.6	
42.3	
4,410	
35	
P [kW] M [Nm]	
25 20 15 10 5 0 10 10 20 30 5 5 5 10 10 20 30 5 5 5 5 10 10 20 30 5 10 10 10 10 10 10 10 10 10 10	0 5 0 5 0 5 0
Speed [rpm] x 1,000	

GMN standard tool interface

HSK interface

Drive Accessories

Spindle Type	Motor	Motor Choke	Voltage Protection
UH-X 100 - 45000/9	IPM	-	+
UH-X 100 - 60000/9	IPM	-	-
UH-X 100 - 75000/5	PM	+	-
UH-X 100 - 90000/4	PM	+	-
UH-X 100 - 105000/3	PM	+	-
UH-X 100 - 120000/1.7	PM	+	+
UH-X 120 - 30000/10	IPM	-	+
UH-X 120 - 45000/10	IPM	-	+
UH-X 120 - 60000/11	PM	+	-
UH-X 120 - 60000/8	PM	+	-
UH-X 120 - 75000/10	PM	+	-
UH-X 150 - 30000/25	IPM	-	+
UH-X 150 - 40000/20	IPM	-	+
UH-X 150 - 50000/18	PM	+	-
UH-X 170 - 20000/17	IPM	-	+
UH-X 170 - 30000/17	IPM	-	+
UH-X 170 - 40000/32	PM	+	+

+required - not required

Internet

Our Internet website www.gmn.de contains comprehensive product information for downloading.

GMN

GMN Paul Müller Industrie GmbH & Co. KG manufactures high precision ball bearings, machine spindles, freewheel clutches and seals for a broad spectrum of applications at its Nuremberg, Germany plant.

Based on many years of experience in the development and production of machine components, GMN specializes in the production of high quality products in the field of spindle technology and, beyond a comprehensive standard product line, also offers customer-oriented special solutions.

A global GMN service network offers competent customer consultation and individualized solutions.

GMN quality management – audited and awarded.

GMN guarantees the highest quality products and services based on long-term reliability. Modern development and production processes ensure products are always at the leading edge of state-of-the-art engineering.

The transparent structure of all GMN company divisions and the clarity of organization flows ensure customer-oriented services and economic security.


All GMN company divisions are certified to DIN ISO 9001.

GMN – safeguarding the future.

At GMN, progress means the best possible customer support and the performance optimization of technical products.

This aspiration is turned into reality at GMN, particularly by conforming to national and international environmental standards for efficient and responsible use of ecological resources.

10

GMN

High Precision Ball Bearings Spindle Technology Sprag Type Freewheel Clutches Non Contact Seals